MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/31

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2011	9709	31	
1	Solve a 3-ter	$e^{2x} - e^{x} - 6 = 0$, or $u^{2} - u - 6 = 0$, or equivalent m quadratic for e^{x} or for u dified solution $e^{x} = 3$ or $u = 3$		B1 M1 A1	
		answer $x = 1.10$ and no other		A1	[4]
2		se chain rule dx		M1	
	0	btain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent		A1	
	0	btain $\frac{dy}{dt} = -6\cos^2 t \sin t$, or equivalent		A1	
		$\text{Ise } \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$		M1	
	0	btain final answer $\frac{dy}{dx} = -\cos t$		A1	
	OR: E	xpress y in terms of x and use chain rule		M1	
	(Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent		A1	
	C	obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent		A1	
	E	xpress derivative in terms of t		M1	
	(Obtain final answer $\frac{dy}{dx} = -\cos t$		A1	[5]
		dx			
•		2 Attempt division by 2^2 and 1 monthing a mention such that 6	2 1	M1	
3	(i) <i>EITHE</i>	R: Attempt division by $x^2 - x + 1$ reaching a partial quotient of x Obtain quotient $x^2 + 4x + 3$	x + kx	M1 A1	
		Equate remainder of form lx to zero and solve for a , or equiv Obtain answer $a = 1$	valent	M1 A1	
	OR:	Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to	zero	M1	
		Obtain a correct equation in a in any unsimplified form		A1	
		Expand terms, use $i^2 = -1$ and solve for <i>a</i> Obtain answer $a = 1$		M1 A1	[4]
	equation	the first M1 is earned if inspection reaches an unknown factor x^{2} in B and/or C , or an unknown factor $Ax^{2} + Bx + 3$ and an equation ond M1 is only earned if use of the equation $a = B - C$ is seen of	tion in A and/or B.		[.]
	(ii) State ar	swer, e.g. $x = -3$		B1	
		swer, e.g. $x = -1$ and no others		B1	[2]
4	Separate var	iables and attempt integration of at least one side		M1	
	Obtain term			A1	
		k ln sin 2 θ , where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$		M1	
		ct term $\frac{1}{2} \ln \sin 2\theta$	1 /	A1	
		constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing term	ms $a \ln(x+1)$ and		
	$b \ln \sin 2\theta$ Obtain solut	for in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm$	1 + 2 or + 1	M1 A1√	
			$1, \pm 2, 01 \pm \frac{-}{2}$		r <i>a</i> 7
	Kearrange a	nd obtain $x = \sqrt{(2 \sin 2\theta)} - 1$, or simple equivalent		A1	[7]

Pa	ge 5	Mark Scheme: Teachers' version	Syllabus	Paper	,
		GCE AS/A LEVEL – October/November 2011	9709	31	
(i)				B1 B1	[2]
(ii)	Consider	the sign of sec $x - (3 - \frac{1}{2}x^2)$ at $x = 1$ and $x = 1.4$, or equival	ent	M1	
	Complete	the argument with correct calculated values		A1	[2]
(iii)	Convert t	he given equation to sec $x = 3 - \frac{1}{2}x^2$ or work <i>vice versa</i>		B1	[1]
(iv)	Obtain final answer 1.13		M1 A1		
	in the inte	erval (1.125, 1.135)		A1	[3]
(i)				B1	
	U			M1	[2]
			or in $\cos(x - \alpha)$ give		[3]
(ii)	Evaluate	$\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684°) (All	low 50.7° here)	B1√	
	•		0°	M1	
			nao		
			inge	Al	[5]
	[Ignore an [Treat ans [SR: The $\cos 2\theta$,or in the giv	Inswers outside the given range.] swers in radians as a misread and deduct A1 from the answer use of correct trig formulae to obtain a 3-term quadrati tan 2θ earns M1; then A1 for a correct quadratic, M1 for o en range, and A1 + A1 for the two correct answers (candidated)	tic in tan θ , sin 2θ , btaining a value of θ)	
	(i) (ii) (iii) (iv) (i)	 (ii) Consider Complete (iii) Convert t (iv) Use a cor Obtain fin Show suf in the inte [SR: Succe (i) State or in Use trig f Obtain a [Do not a M1A0] (ii) Evaluate Carry out Obtain an Use an ap Obtain se [Ignore an [Treat ans [SR: The cos 2<i>θ</i>,or in the giv 	 GCE AS/A LEVEL – October/November 2011 (i) Make recognisable sketch of a relevant graph over the given interval Sketch the other relevant graph and justify the given statement (ii) Consider the sign of sec x – (3 – 1/2 x²) at x = 1 and x = 1.4, or equival Complete the argument with correct calculated values (iii) Convert the given equation to sec x = 3 – 1/2 x² or work <i>vice versa</i> (iv) Use a correct iterative formula correctly at least once Obtain final answer 1.13 Show sufficient iterations to 4 d.p. to justify 1.13 to 2 d.p., or show t in the interval (1.125, 1.135) [SR: Successive evaluation of the iterative function with x = 1, 2, s (i) State or imply R = √10 Use trig formulae to find α Obtain α = 71.57° with no errors seen [Do not allow radians in this part. If the only trig error is a sign err M1A0] (ii) Evaluate cos⁻¹(2/√10) correctly to at least 1 d.p. (50.7684°) (All Carry out an appropriate method to find a value of 2θ in 0° < 2θ < 18 Obtain an answer for θ in the given range, e.g. θ = 61.2° Use an appropriate method to find an obters in the given range [Ignore answers outside the given range.] [Treat answers in radians as a misread and deduct A1 from the answer [SR: The use of correct trig formulae to obtain a 3-term quadrat cos 2θ,or tan 2θ earns M1; then A1 for a correct quadratic, M1 for o 	 GCE AS/A LEVEL – October/November 2011 9709 (i) Make recognisable sketch of a relevant graph over the given interval Sketch the other relevant graph and justify the given statement (ii) Consider the sign of sec x – (3 – 1/2 x²) at x = 1 and x = 1.4, or equivalent Complete the argument with correct calculated values (iii) Convert the given equation to sec x = 3 – 1/2 x² or work <i>vice versa</i> (iv) Use a correct iterative formula correctly at least once Obtain final answer 1.13 Show sufficient iterations to 4 d.p. to justify 1.13 to 2 d.p., or show there is a sign change in the interval (1.125, 1.135) [SR: Successive evaluation of the iterative function with x = 1, 2, scores M0.] (i) State or imply R = √10 Use trig formulae to find α Obtain α = 71.57° with no errors seen [Do not allow radians in this part. If the only trig error is a sign error in cos(x – a) give M1A0] (ii) Evaluate cos⁻¹(2/√10) correctly to at least 1 d.p. (50.7684°) (Allow 50.7° here) Carry out an appropriate method to find a value of 2θ in 0° < 2θ < 180° Obtain an answer for θ in the given range, eg. θ = 61.2° Use an appropriate method to find a nother value of 2θ in the above range Obtain second angle, e.g. θ = 10.4°, and no others in the given range [Ignore answers outside the given range.] [Treat answers for the angle.] [SR: The use of correct trig formulae to obtain a 3-term quadratic in tan θ, sin 2θ cos 2θ, or tan 2θ earns M1; then A1 for a correct answers (candidates who square musof θ in the given range.] 	GCE AS/A LEVEL - October/November 2011970931(i) Make recognisable sketch of a relevant graph over the given interval Sketch the other relevant graph and justify the given statementB1(ii) Consider the sign of sec $x - (3 - \frac{1}{2}, x^2)$ at $x = 1$ and $x = 1.4$, or equivalentM1Complete the argument with correct calculated valuesA1(iii) Convert the given equation to sec $x = 3 - \frac{1}{2}x^2$ or work vice versaB1(iv) Use a correct iterative formula correctly at least once Obtain final answer 1.13 Show sufficient iterations to 4 d.p. to justify 1.13 to 2 d.p., or show there is a sign change in the interval (1.125, 1.135)A1[SR: Successive evaluation of the iterative function with $x = 1, 2,$ scores M0.]B1(i) State or imply $R = \sqrt{10}$ Use trig formulae to find α Obtain $\alpha = 71.57^{\circ}$ with no errors seen [Do not allow radians in this part. If the only trig error is a sign error in $\cos(x - \alpha)$ give M1A0]B1(ii) Evaluate $\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684°) Obtain an answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$ Use an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 180^{\circ}$ Obtain an answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$ Use an appropriate method to find on others in the given range [Ignore answers outside the given range.]B1[Treat answers in radians as a misread and deduct A1 from the answers for the angles.]SR: The use of correct trig formulae to obtain a 3-term quadratic in tan θ , sin 2θ , cos 2θ , or tan 2θ earns M1; then A1 for a correct quadratic, M1 for obtaining a value of θ in the given range, and A1 + A1 for the two correct answers (candidates who square must

	Page 6		Mark Scheme: Teachers'	version	Syllabus	Paper	
			GCE AS/A LEVEL – October/No	ovember 201	1 9709	31	
7	(i)		rect method to express \overrightarrow{OP} in terms of \overrightarrow{A} e given answer	L		M1 A1	[2]
	(ii)	EITHER: OR1:	Use correct method to express scalar p in terms of λ Using the correct method for the mode moduli and express $\cos AOP = \cos BO$ Use correct method to express $OA^2 + $ of λ Using the correct method for the mode product of the relevant moduli and ex or λ and OP	uli, divide scala DP in terms of λ $OP^2 - AP^2$, or one of AP^2 , or of AP^2 .	The products by products by or in terms of λ and C $OB^2 + OP^2 - BP^2$ in terms the expression by twice the product of t	M1 of DP M1* ms M1 the	
		01.		$9+2\lambda$	$11+14\lambda$		
		Obtain a c	correct equation in any form, e.g. $\frac{1}{3\sqrt{9}}$	$\frac{1}{1}$ + 4 λ + 12 λ^2)	$\overline{5\sqrt{(9+4\lambda+12\lambda^2)}}$	A1	
		Solve for Obtain λ =	λ	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	M1(dep*) A1	[5]
		[SR: The $\cos \frac{1}{2} AC$ but accep spurious r [SR: Allo	M1* can also be earned by equating co <i>DB</i> and obtaining an equation in λ . The ant non-exact working giving a value of negative root of the quadratic in λ is reje we a solution reaching $\lambda = \frac{3}{8}$ after cance ore 4/5. The marking will run M1M	exact value of λ which round cted.] elling identical	f the cosine is $\sqrt{(13/15)}$ ds to 0.375, provided to incorrect expressions	5), the for	
	(iii)	_	e given statement correctly			B1	[1]
8	(i)	Obtain on Obtain a s	elevant method to determine a constant the of the values $A = 3$, $B = 4$, $C = 0$ second value third value			M1 A1 A1 A1	[4]
	(ii)	Integrate a Obtain ter Substitute	and obtain term $-3 \ln(2 - x)$ and obtain term $k \ln(4 + x^2)$ rm $2 \ln(4 + x^2)$ e correct limits correctly in a complete in $h + h \ln(4 + x^2)$ and $h \neq 0$	ntegral of the fo	orm	B1√ M1 A1√	
			$(b) + b \ln(4 + x^2), ab \neq 0$ ven answer following full and correct w	orking		M1 A1	[5]

Page		ge 7	Mark Scheme: Teachers' version	Syllabus	Paper	ſ
			GCE AS/A LEVEL – October/November 2011	9709	31	
9	(i)	Equate de Obtain an	act rule rrect derivative in any form rivative to zero and solve for x swer $x = e^{-\frac{1}{2}}$, or equivalent swer $y = -\frac{1}{2}e^{-1}$, or equivalent		M1 A1 M1 A1 A1	[5]
	(ii)	Attempt i	ntegration by parts reaching $kx^3 \ln x \pm k \int x^3 \cdot \frac{1}{x} dx$		M1*	
		Obtain $\frac{1}{3}$.	$x^{3} \ln x - \frac{1}{3} \int x^{2} dx$, or equivalent		A1	
		Integrate	again and obtain $\frac{1}{3}x^3 \ln x - \frac{1}{9}x^3$, or equivalent		A1	
		Use limits	s $x = 1$ and $x = e$, having integrated twice swer $\frac{1}{9}(2e^3 + 1)$, or exact equivalent		M1(dep*) A1	[5]
			ttempt reaching $ax^2 (x \ln x - x) + b \int 2x(x \ln x - x) dx$ score	s M1. Then give	the	
		IIISt AT IC	or $I = x^2 (x \ln x - x) - 2I + \int 2x^2 dx$, or equivalent.]			
10	(a)	EITHER: OR:	Obtain $x^2 - y^2 = 1$ and $2xy = -2\sqrt{6}$ Eliminate one variable and find an equation in the other Obtain $x^4 - x^2 - 6 = 0$ or $y^4 + y^2 - 6 = 0$, or 3-term equivale Obtain answers $\pm (\sqrt{3} - i\sqrt{2})$ Denoting $1 - 2\sqrt{6i}$ by $Rcis\theta$, state, or imply, square row and find values of R and either $\cos \theta$ or $\sin \theta$ or $\tan \theta$	ent ots are $\pm \sqrt{R} \operatorname{cis}(\frac{1}{2})$	$ \begin{array}{c} \text{A1}\\ \text{M1(dep*)}\\ \text{A1}\\ \text{A1}\\ \text{A1}\\ \frac{1}{2}\theta\right)\\ \text{M1*} \end{array} $	[5]
			Obtain $\pm \sqrt{5} (\cos \frac{1}{2}\theta + i \sin \frac{1}{2}\theta)$, and $\cos \theta = \frac{1}{5}$ or $\tan \theta = -2\sqrt{6}$ Use correct method to find an exact value of $\cos \frac{1}{2}\theta$ or since $\frac{1}{2}$ or $\sin \theta = -2\sqrt{6}$	5	or A1 M1(dep*)	
			Obtain $\cos \frac{1}{2}\theta = \pm \sqrt{\frac{3}{5}}$ and $\sin \frac{1}{2}\theta = \pm \sqrt{\frac{2}{5}}$, or equivalent		A1	
			Obtain answers $\pm (\sqrt{3} - i\sqrt{2})$, or equivalent		A1	
			[Condone omission of \pm except in the final answers.]			
	(b)	Show a ci Shade the Carry out	Int representing 3i on a sketch of an Argand diagram rcle with centre at the point representing 3i and radius 2 interior of the circle a complete method for finding the greatest value of arg z swer 131.8° or 2.30 (or 2.3) radians		$\begin{array}{c} B1\\ B1\\ B1\\ M1\\ A1 \end{array}$	[5]

[The f.t. is on solutions where the centre is at the point representing -3i.]